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1. Motivation




Bank Loan Portfolio Tokenization: “Disassembling™

Skoltech

Each bank’s loan at value is

splatted into parts

« with the same income
expectation

 own number of shares

e OWwnN variance

based on

* |deal case return

« time period

* |evel of losses in the default

* rate of interest over time.

—

tokenization

4



Bank Loan Portfolio Tokenization: “Assembling™

=~ =

Distribute all received tokens into
packages of n different tokens each.

If 0,°< 6,2, then packages’
variance per expected income py:

1
< - 0y° < 0.

Central Limit Theorem

“better not to have all eggs in one basket”
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Bank Loan Portfolio Tokenization: Summary
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Bank loans can be tokenized and
regrouped into commodity

Lack of bank auditability by
government

Free secondary market

New competitive tools for small
Investors
Free secondary market

Blockchain needed
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Problem
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Tokenization 1 Tokenization 2

-
Remaining tokens

How to construct as many packages as possible for a given token set?
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2. Portfolio Sold-Out Problem [4]




Notations

For any positive integer K we denote K = {1, ..., K}.

The portfolio is characterized by the number of assets N > 1 and a set of random
variables A; - ¢4, ..., Ay - &v, Where

A, < -+ < Ay are deterministic positive numbers equal to the expected returns of
each asset

e random variables &4, ..., &y, describing the uncertainty per unit of return
*Et{, =1, neN
- covariance cov(§;,§) = K;, 1L,j€N

« covariance matrix K = (Kij)ijeN

A package composed of the portfolio (K, é) is a vector ¢ € RN such that
+ 0 <¢<Aand
- EcTE=1.
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Problem

The variance of the package ¢ equals
V(©) = VareTe = ¢TKE

A set of M packages Cy = (¢

—

| ...[¢m) € RN*M s the tokenization of
the portfolio (&) if IM_, &, <A.

The variance V of tokenization Cy is the maximum variance of its
packages: V(Cy) = max V(Cp,).

meM

Problem. For a given portfolio (K, 2) and a variance threshold ¢? > 0,

the portfolio sold-out problem is

M - max
M,Cyv: V(CM)SGZ
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Special Cases

By assets:

Categories = Covariance matrix types
Homogeneous K = o2I
Independent  K;; = 0fori # j
General any K is allowed

By packages:

Categories Package types

Discrete C s is boolean matrix

Continuous Cjy is real matrix

_ Discrete Continuous

Homogeneous to be solved to be solved
Independent to be solved to be solved
General to be solved to be solved

The proportion of tokenized asset into the packages

defines as

Tokenized fraction =

the total amount of tokenized asset

the total amount of initial asset

12
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3. Theoretical analysis
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3.1 Homogeneous [4]

| Discrete | Continuous__
to be solved to be solved
to be solved to be solved
to be solved to be solved

<

_ Discrete Continuous

Independent to be solved to be solved

to be solved to be solved

14
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Row Sum Is Enough to Check the Tokenization
Possibility

o | [ [
a3l |

THEOREM 1 (TOKENIZATION NECESSARY CONDITION). If for

- some n” in Step 1.(b) of the Algorithm 1 the minimum was

reached by My = [Sn_j4n+—1(@*)/n*], then before Step 2¥n >

n‘iay .. =day ,...= M andthe total number of packages
M* = M.

1
ok
. . LEMMA 3. If the matrix C € RN*M s the optimal solution to

the problem (7), then the matrixC = [%| ... |§) obtained by row
averaging from C is the optimal solution.

3 3 3

package size initial assets

Theorem 1 and Lemma 3.



The Existence of Monotonic Solution

Optimal
solution

%.

a* =(1,1,3,4,3)"

LEMMA 1 (THE EXISTENCE OF MONOTONIC SOLUTION). Let

d=3YM . d, be the number of tokens in an arbitrary optimal

solution for (2). Then there is an optimal solution with [E}
distributed tokens.

Lemma 1

and Optimal nondecreasing
| emma solution

-

a* =(1,1,3,3,4)"

LEmMMA 4. If d is the optimal solution for (11), then (E) also
defines the optimal solution.
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Criteria for Discrete and Necessary Condition for

Continuous Problems

Lemma 2
and
Lemma
.
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LEMMA 2 (THE PIGEONHOLE PRINCIPLE CONSEQUENCE). The
number of assembled by any algorithm packages M, which

includes a = (a) tokens of the corresponding types, satisfies

e k|Sy (where | means “divides”)
o M =S5y/k
e Vne (k—-1): 32 > M.

LEMMA 5 (OPTIMAL SOLUTION NECESSARY CONDITION). Ifa
has non-increasing ordered components, i.e. (E} = a, and is the
optimal solution (11), then¥n € (N = 1): a, < apy1 = ap =
Ap.




Optimal Algorithm for Discrete Homogeneous
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Theorem 2.

Step 1.(a):
S3=5
B=0

a* =(1,1,3,4,6)7

a* =(1,1,3,4,4)7

a* =(1,1,3,4,3)7

Optimal
solution

a* =(1,1,3,4,3)"
Optimal nondecreasing
solution

a! =(1,1,3,3,4)7

Figure 3: Algorithm 1 operation example: input and Step 1

Figure 4: Algorithm 1 operation example: Step 2 and result-
ing solution

18



Optimal Algorithms for Both Special Cases
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Theorem 3. S

Algorithm 2
(1) Step 1: find a*

(a) Initialize the variables for the mathematical expecta-
tion and variance of the taken assets
e E:=0
e V:=0

(b) Initialize @
e ¥YneN:a, =0

(c) Formally, we define Ay = 0. We are trying to replace
ay from A, with A,y fork > n.Forn=0,...,N—-1:
® Eperw = E+ (N =n)(Apsr — An)
® View =V + (N —n)(A2, - A2)

n+1

. H}%Efmw = View

- E=Eqw

= V= View

- vk =n+1...,N:a.:=Ap.
e Else

-n*i=n+1

- We find A € [A,, Apiq] as the largest solution to
the equation (quadratic or linear)

1
7 E+ (N =)A= Au)” =V + (N =) (& - 4,) = 0.
(12)
- Vk>n*:a:=A.
-E=E+(N-n)(A-A,).
-V :=V+(N-n)(A®*-A2).
— Exit the cycle by n.
(2) Step 2: construct packages
(a) Calculate the number of packages M = M(a*) =
[lla*[l].
(b) The composition of each of the M packages is defined
in the same way: 5.

Figure 5: Continuous homogeneous tokenization algorithm

Time complexity for sorted assets: O(N)
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3.2 General & Independent Continuous

_ Discrete Continuous

Independent to be solved to be solved

to be solved to be solved

<

_ Discrete Continuous

Independent to be solved

20




Theorem A (Short Form). The continuous portfolio sold-out
problem is equivalent to
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VA
Q

*lall}

A

i Ka
HZLHl — max .
a: 0<

QL
VAN

Theorem B (Polynomial reduction). The optimal
portfolio sold-out problem for the continuous general case
(CGOPSO) is polynomially reducible to Second-Order
Cone Programming (SOCP), allowing for optimal
numerical solutions.

min 1z

SOCP: Ail‘-—l—b?‘,HQ < C?;ﬁ%—d@, 1=1,---.n

S.1.

LP: linear program,

QP: quadratic program,

SOCP second-order cone program,
SDP: semidefinite program,

CP: cone program.
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Continuous Independent and General Cases

Independent  K;; = 0fori # j ) less complex

General any K is allowed

" Discrete | Continuous

Homogeneous optimal explicit optimal explicit
solution S n
Independent to be solved ( ©Ptimal numerical

solution

optimal numerical
General to be solved P :
solution

22
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3.3 General & Independent Discrete
Continuous

Independent to be solved

General to be solved

<

Continuous

Homogeneous optimal explicit optimal explicit
solution solution
Independent NPH optimal numerical
solution
General NPH optimal numerical

solution

23
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Discrete Case Algorithm

Generate all possible 5
: A
A ... vectors of assets ;
B allocated into portfolio = B
I
C 1 | C

Given the number of

Initial assets (N=3) chosen assets (k) = 2 :
All possible vectors : Keep only
e e e e e e e e e e e e e e e e e e e e e e . Vectors that
RNy e SRS IRETERR Variance < G2
|  meger (2| |4
1 +1 < - Programming : | d, n
: . a———
: 0 1

] - - - - - - : . C _ — _J-
- Number of packages ; : A

(M) =2 : : All allowed vectors

24
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Discrete Independent Case

Theorem C. Discrete independent optimal portfolio sold-out problem is NP-Hard.
Proof.

The partition problem is NP-complete.

Given a set of positive integers a1, . . . , ay, find out whether there is a subset of indexes
I c{1,...,N} such that

S _ N
ZnEI an = PR S = anl Qp, -

We construct a tuple (A4, k, K, 0?) as the input:

e A= (1,---,1)7  where dim (/I) = 2N

c k=N

K is diagonal matrix with (ay,...,ap,0,...,0) on the diagonal
co2o S

The original problem can be reduces to

(M, Dyr) = argmaxys p,, M,

25
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Discrete Independent Case (2)

Dy = (cfl| e |JM) e {0,1}2V*M " and the number of packages M < {0,

—

The constraint is Z,ﬂf dm < A:
N S
Zz 1 mz' a; =) i1 dmi- @ < 3, 1]
If M = 2, then ﬁ is divided into 2 groups, a?l and ng
J Jg meet the constraint [1]
e A= J + c?z
e di,dy € {0,1}2N.
N N N

1,2},

26
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Discrete Independent Case (3)

For example, given a solution subset of indexes | {1, . . ., N}, we can construct
di=([1€l],...,[NeI],0,---,0,1, ---, D)’

I N
GTQ — ([]- QI],,[N%’I],]-, T ]-909 T T O)Ta

For solution M = 2, 1] N=|1]

e as the solution:

ﬁildl,i - Q; = 5/2
Zz’]\il dz,i ‘A = 5/2

—

ddy= (L 1) =
o Cil,Ciz E{O,l}zN.

27
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Discrete Independent and General Cases

Independent  K;; = 0fori # j
General any K is allowed ) more complex
T oiscrete | coninuous__

Homogeneous optimal epr|C|t optimal epr|C|t
solution solution

optimal numerical
solution

ptimal numerical
solution

Independent

28
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4. Dataset [1]




DeFl Meets Classic Finance

Decentralized Finance: P &

peer-to-peer financial services on public blockchains. QF

BANK FOR
INTERNATIONAL
SETTLEMENTS

Parameters:
* Probability of Default (PD)
» Loss Given Default (LGD)

« Liquidity coverage ratio
(LCR)

Lending protocols -

Maker Aave Kava Compound

Skoltech
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UserlID / Transacti

Problem

| 7 Enquiry loan details

i R |
i T——_ . |
) [ 2 \\\\\\ General details: |
: Governance Module | N . o

I |system stabilizer Module [ | Ioan Sstatus S'[atIStlca| term: :
! {colltera Moduie ™ | - debt amount _ probability |
fre— - | - collateral ratio default :
s - | | - liquidation ratio (PD) |
: Modul I :

| lorack wosue 0 | - loss given default | |
JocadB | (et |
. | i '
I |Flash Module ] | g . . = Log EC|UIV8.|ent |
| e et s, B | Historical details: Rate |
e o ! - No of loans '
: | oarns (LER) |
| o o || - Allactionsina |
! A":C'jl [ user |
: Public s 2 I :
i | |
| |
H |

Function: stakeEnd(uint256 stakeIndex, uint4@ stakeIdParam)

MethodID: 0x343009a2

' [0]: 00000 000000 00 00 000 0000

Skoltech

1

' [1]: o 00 000000 00 o 00000 37ac

1

: ’ Et h e rS C (] n View InputAs v & Decode Input Data W Advanced Filter

| \

1

! 1

I

' ® From: 0xBfaeD4F3bc89¢22e6937dFO0D004B343F5ESf1F5 (1) |
1

. ' ¢ Name Type

! @ Interacted With (To): [5) 0xd07e86f68C7B9f9B215A3ca3E79E74Bf94D6A847 (DAO Maker: Staking) (0 @ | / o stavernd -
I stakelndex uin

i : 1 stakeIdParam uint40
I

i (® ERC-20 Tokens Transferred: » From DAO Maker: Staking To 0xBfaeD4...F5E5f1F5 For 3,394.506999550147602754 ($2,500.41) '




MakerDAO PIatform@

MakerDAO is an Ethereum-based lending and borrowing platform
that give a stable Dai coin to borrowers. To get coins, user need to give
asset to the platform as a collateral such as ETH, WBTC or ETC.

What is MakerDAO process? &
o Borrow Dai through locking up crypto assets :

as collateral | Bormower Bortowet
o Repay Dali + fee to retrieve collateral back @ @
o Liquidate if collateral ratio < liquidation ratio | = Provdes Colera Repas

E [ 1,0000AILoan | | 4 1EM=5$2000 | E@ m

Source: https://messari.io/report/makerdao-valuation
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Liquidation Process

Remaining Collateral Borrower

leftover collateral

Below 1.5 Collateral /

auctioned off Debt Threshold

outstanding debt

1,000 DAI Loan
@ + 20 DAl Interest
+133 DAI Penalty
Proceeds of Auction
Used to Repay Loan

Source: https://messari.io/report/makerdao-valuation

Important parameters:
stability fee

- a fee that manages the risk
associated with the coin's issuance.
collateral ratio

- fraction between collateral and Dal
debt
liquidation ratio

- ratio for liquidation process is by
MakerDAO

if collateral ratio < liquidation ratio




@ Etherscan ABI Eiles

Transactions

Xt

Inpu

$

Blockchali

CSV Files

contracts

Skoltech
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Start

Preprocessing

‘efhereum

<

Web3.0
Decoding data

Get function’s
details

Corsis

. % Function details

ABI
txt Files Functions Desciptions Arguments

#* frob

& fold

# move

enerate/return DAI, . s
» flux frob Eaieats/ i,u, v, w, dink, dart
lock/unlock assets
» fork
» grab
DAI/USD .
fold rita i, u, rate
move transfer stable coin e datead
between users e
# generate dai
b Paybac,k et transfer collateral .
# lock dai flux D ilk, wad, src, dst
# unlock dai
@ liquidate
W iy % 5
el fork splitting vault ilk, src, dst, dart, dink

¥ transfer out

grab liquidate a vault i, u, v, w, dink, dart
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Operation
table

User table

Debt O1

>
Debt O1 H
Get rate - Split user table Debt O1 i
pausp [ to debt table :
Debt 02 '\_.
rate from
fold function Debto2
(YETe) Calculate
DAI/USD rate Log Equivalent Rate
into table
Calculate DAI for
transfer in/out
and liquidate
Calculate
LGD
Calculate fee
for liquidate
Calculate
debt accumulative
Map per day Stability fee
ETH/USD rate from
JUG module

into table

i

ETH Price Calculate
from Oracle PD

Calculate
collateral ratio

Brownian -
Motion Poisson
model
Map model
liquidation ratio Liquidation ratio
from SPOT
module
# liquidate
define : res“,:‘:t Metrics
status of debt ropsal KL/TV/RRMSE/RMAE
¥ active
4 transfer out
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Loss Given Default (LGD)

We represent a user’s balance at time t as:
Bal(t) =a(t)-e(t) —d(z),
To calculate LGD for a user’s collateral liquidation at time t, we use the following formula

LGD(f) = Bal(t—) — Bal(z)

dt=)
Where a(t ) . collateral asset at time t yes no
e(t) . price of asset at time t
d(t) : debt at time t User lose User gain
t— : tright before the liquidation I p|a?fi?r$]ﬁ;2ins pla?f?)rr]riﬁltsées

_______________________________________________________________________________
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Probability of Default (PD)

Probability of default (PD) for a single debt
during interval time T via Brownian Motion:

¢(fﬁmm) = P (TfEmin,f < T) = /

where 7

Lmin

'min

Buitnll) = — 1

: time intervals
. stability fee

. level in brownian motion
. level of default
. liquidation ratio
: amount of collateralized assets
. exchange rate
. standart deviation

0o \V2ms3
1 do* T
( 0 mm)_{_ft.
o ao - €o

e + fs\f)_uwgfl;swiz

as

We know
PD

_Bt

Xmin(t)
‘ .Vmin(t)

B+(0) -
Xmin 7
- — —
.
Ymin ] ""— " [
o sz r
'b,',’,f 'h';'bf
time
We can
predict how By number of
many liquidate, we
liguidates can can predict
happen for benefit of the
given time platform
inverval
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Log Equivalent Rate (LER)

A constant log-interest rate that results in the same final debt.
To find LER , we use the cumulative debt at time 7  with LER = x,
denote by h(x) which is calculated as

— (t)

h(x) = Z Ad, -exp (x(T — t,)) .

\

d(to)

The LER is then determined by solving the following equation for x:

h(x) = d(T) + (a(T) — a(T-)) - e(T), : T
| . | — 81
Where a(T) - collateral asset attime T ‘ 6
_ _ if liquidation happens, we “:
G(T)  price of asset at time T consider this term as the loss of < |
collateral value during liquidation 2SS SSSSSSSNNNNSSRNNNARR

- e mE e e g AT 0 0 0000000000000 00000G0O0 0

- ~aaht 2"t trmmen T  ANNANANNNNANANNNSNNSNNS NSNS
. dept at ume N N
088353202008 68553006C6035 53

5 @
L]
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5. Numerical Results

40
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Methodology : Dataset

1,000 DAI ($2,000)
=$1,400

L

Initial debt Normal repayment
Normal Return 1,000 DAI
Borrower case ® @+ 20 DAI (interest)
BE. ®
' Return collateral
|‘ 1 l I Q 1ETH |
|
|
i Liquidation
W e =
Borrow C(i”é‘%?_lral - ‘i ETH price drops
:
|
|
|

( \
| |
| |
| |
|
\

1,000 (loan)
L, (Colateralrato <151 (24 120 (nterest)
@ Liquidation + 133 (penalty)
| case N\
= KX
Return remaining T
MakerDAG | ‘ 0.176 ETH

MakerDAO loan system

‘Collateral
auction
Y 1ETH

Daily data '
IS borrowers with :
debt amounts. |
K is a covariance :
for their defaults.

41
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MakerDAQO dataset

1.0 1 —— Cumulative distribution function of Xmin
— v Daily data

A is borrowers with debt amounts.
<|K IS a covariance for their defaults.

General case: Any K is allowed

probability

=Xmin

Probability and level of default

42
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Result : Continuous General Case

1.0 4

— MA
— SOCP

0.0

0 200 400 600 800 1000
Date

Sorted tokenized fractions for continuous general case

the total amount of tokenized asset

Tokenized fraction =

the total amount of initial asset

Method Token_lzed
Fraction
Baseline : Metaheuristic 0
Algorithm (MEALPY) 65.20 %
Second Order Cone Program 0
(CVXPY) 65.69 %

Tokenized fractions of the continuous general
case with different optimization methods

43
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Result : Continuous General Case

1.0 1 1.00 -
0.95
0.8 1
(<} 0.90
0.6
g ' ® g 0.85
o] v}
(&)
C 080
0.4 -
0.75 A
0.2
0.70
@® MAis better. — MA
0.0 - @® SOCP s better. 0.65 —— sOCP
0.0 0.2 0.4 0.6 0.8 1.0 0.1 0.2 0.3 0.4 0.5
SOCP o
Comparing tokenized fractions with different Comparing tokenized fractions with different levels
optimization methods of o

44



Skoltech

Proportion

Results : Discrete General Case

.9982

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280
Number of assets in each day (N)

The proportion of data that have less than or equal to
N assets to the total amount of data.

109 — k=2
— k=3
— k=4
084 — k=5
— k=7
— k=10
c o — k=15
2 — k=20
=
o
-
,E 0.4 -
0.2 - f
0.0 -
T T T T T
0 200 400 600 800

Date

The proportion of the number of allowed vectors to
the total number of possible vectors.

45
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Fraction

Results : Discrete General Case

l.ﬂ_ — k=2
— k=3
k=4
0.8 k=5
— k=7
— k=10
064 — K=15
— k=20
0.4
0.2 1
0.0
T T T T T
0 200 400 600 800

Date
Sorted tokenized fractions for discrete general case

Ch‘l;)hseez uar::;;()(];() Tokenized Fraction
k=2 28.03 %
k=3 20.40 %
k=4 14.93 %
k=5 11.73 %
k=7 7.17 %
k=10 3.45 %
k=15 0.78 %
k=20 0.04 %

Tokenized fractions of the discrete general case

vary with the amount of chosen assets

46
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Discrete General Case

0.0 1

—0.1

I
o
s

i

Correlation
|
o
Lid
i

|
o
=
i

—0.5 1

—0.6 1

—— (Correlation between concentration ratio and fraction
—— Correlation between Gini coefficient and fraction

T T T T T T T T T T T T T T T T T T T
2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20
k

Cumulative share of income earned

100%
Cumulative share of people from lowest to highest incomes

Gini=Al(A+B)=2A=1-2B
Market concentration = ||*||_2/||*||_1

Comparing correlation between market concentration ratio and fraction and correlation between

Gini coefficient with different number of chosen assets (k)

47
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Demo [2]

Current balance
18.447 QTKX 0O ETH

QuickToken
The server-side / Web API \ e 21cf30§9a97bd64e4dcdaafe

Account Asser subsysem TraNEACION Processing subsyEem B Authorization interface

A A
¥ ¥
Mobile application Distributed ledger subsystem

Portfolio

ansaction tracking interface

Current Total Profit
E cted Profit

& - e T,

Portfolio Trading

48
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6. Gas Numerical Optimization

49
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Dividends Payout

» Securities

A = () € RMN

» Investor ids

I = (i1,....in)T € RN A= .......
K

- Payout per unit

C = (cl,...,cjff)T c RMx!
N
Dividends piv(i) = Z Pay(n) - [i, = i,
n=1
where v

Pay(n) = Z Crnm n

=

| = (Alice, Bob, Alice, Clare, Dail, Alice, Eva)
N securities

o fF o B o 8
] ]

0

0 [ 0 I I0

50
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Payout Scenarios

Time complexity

Algorithm
summation multiplication
Naive O(NM) O(NM)
Sparse O(A4 + N) O(A4 + N)

Repeated Columns
Low Rank
Repeated Investors

OMK + N) O(MK + N)
O(NR) O(NR)
O(NM) O(1 M)

where

e /V 1s the number of securities

e M 1s the number of assets

e A, < NM is the number of positive elements in A
e R < M 1s the rank of the matrix A

e [, < N 1s the number of unique investors in /.

51
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Data generator: Repeated Investors

Dirichlet Process
» Chinese Restaurant Process

e i
[\

p(kth occupied table) o< ny

p(next unoccupied table) o a

2

1
8+a 8+ o

OO
1"'*---._,..«
3 2
STH STa

a

8+ a

52
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Numerical Results

1e7 Sparse matrix with capacity 20%
|
— naive
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Numerical Results (2)
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Conclusions
| Discrete | Continuous

Homogeneous optimal explicit optimal explicit
solution solution
Independent NPH optimal nqmerlcal
solution
General NPH optimal numerical
solution

o MakerDao DeFi protocol provides real loan dataset, which is impossible
for classic banking system.

o Classic problem complexity approach helps to reduce gas consumption in
DeFi.
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Outlook

Level passage for two different assets.
More lending protocols.
Numerical gas optimization.
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