

Portfolio Sold-Out Problem in Numbers for DeFi Lending Protocols

<u>Yury Yanovich</u> Skolkovo Institute of Science and Technology & HSE University

October, 2023

References

[1] Chaleenutthawut, Y., Davydov, V., Evdokimov, M., Kasemsuk., S., Kruglik, S., Melnikov, G. & Yanovich, Y. (2023) Loan Portfolio Dataset from MakerDAO Blockchain Project. (under review-email me for draft).

[2] Davydov, V., Krymov, A., Ozmaden, D., Pashchenko, Y., Tenyaev, A. & Yanovich, Y. (2023, July). Demo: Non-Fungible Tokens in Asset-Backed Securitization. In Proceedings of the 2023 IEEE 43nd International Conference on Distributed Computing Systems (ICDCS) (in print, CORE A).

[3] Chaleenutthawut, Y., Davydov, V., Kuzmin, A., & Yanovich, Y. (2021, December). Practical Blockchain-Based Financial Assets Tokenization. In Proceedings of the 2021 4th International Conference on Blockchain Technology and Applications (pp. 51-57).

[4] Davydov, V., & Yanovich, Y. (2020, July). Optimal portfolio sold-out via blockchain tokenization. In Proceedings of the 2nd International Electronics Communication Conference (pp. 129-136).

[5] Davydov, V., Gazaryan, A., Madhwal, Y., & Yanovich, Y. (2019, December). Token standard for heterogeneous assets digitization into commodity. In Proceedings of the 2019 2nd International Conference on Blockchain Technology and Applications (pp. 43-47). My research interest are not limited to the current topic!

1. Motivation

Bank Loan Portfolio Tokenization: "Disassembling"

Each bank's loan at value is splatted into parts

- with the same income expectation
- own number of shares
- own variance

based on

- ideal case return
- time period
- level of losses in the default
- rate of interest over time.

Skoltech

Bank Loan Portfolio Tokenization: "Assembling"

Distribute all received tokens into packages of **n** different tokens each.

If $\sigma_i^2 \le \sigma_0^2$, then packages' variance per expected income p_0 : $\le \frac{1}{n} \sigma_0^2 < \sigma_0^2$.

Central Limit Theorem

"better not to have all eggs in one basket"

ERC-20s (interchangeable~money)

ERC-721 (unique~cryptokitties)

Bank Loan Portfolio Tokenization: Summary

Bank loans can be tokenized and regrouped into commodity

- New competitive tools for small investors
 Free secondary market

- Lack of bank auditability by ٠ government
- Free secondary market

Blockchain needed

Problem

How to construct as many packages as possible for a given token set?

Aim

To solve portfolio sold-out problem.

2. Portfolio Sold-Out Problem [4]

Notations

For any positive integer K we denote $\overline{K} = \{1, ..., K\}$.

The portfolio is characterized by the number of assets $N \ge 1$ and a set of random variables $A_1 \cdot \xi_1, ..., A_N \cdot \xi_N$, where

• $A_1 \leq \cdots \leq A_N$ are deterministic positive numbers equal to the expected returns of each asset

- random variables ξ_1, \dots, ξ_N , describing the uncertainty per unit of return
- $\mathbf{E} \xi_n = 1, n \in \overline{N}$
- covariance $cov(\xi_i, \xi_j) = K_{ij}, i, j \in \overline{N}$
- covariance matrix $\mathbf{K} = (K_{ij})_{i,j\in\overline{N}}$

A **package** composed of the portfolio $(\vec{A}, \vec{\xi})$ is a vector $\vec{c} \in \mathbb{R}^N$ such that

• $0 \leq \vec{c} \leq \vec{A}$ and

•
$$\mathbf{E} \, \vec{\mathbf{c}}^T \vec{\xi} = 1$$

Problem

The variance of the package \vec{c} equals $V(\vec{c}) = Var \vec{c}^T \vec{\xi} = \vec{c}^T \mathbf{K} \vec{c}.$

A set of M packages $C_M = (\vec{c}_1 | ... | \vec{c}_M) \in \mathbb{R}^{N \times M}$ is the tokenization of the portfolio $(\vec{A}, \vec{\xi})$ if $\sum_{m=1}^{M} \vec{c}_m \leq \vec{A}$.

The variance V of tokenization C_M is the maximum variance of its packages: $V(C_M) = \max_{m \in \overline{M}} V(\vec{c}_m)$.

Problem. For a given portfolio $(\vec{A}, \vec{\xi})$ and a variance threshold $\sigma^2 > 0$, the portfolio sold-out problem is $M \rightarrow \max_{\substack{M, C_M: V(C_M) \le \sigma^2}}$

Special Cases

By assets:

Categories	Covariance matrix types
Homogeneous	$\mathbf{K}=\sigma_{0}^{2}\mathbb{I}^{N}$
Independent	$\mathrm{K}_{ij}=0 ext{ for } i eq j$
General	any ${f K}$ is allowed

By packages:

Categories	Package types	
Discrete	\mathbf{C}_M is boolean matrix	
Continuous	\mathbf{C}_M is real matrix	

	Discrete	Continuous
Homogeneous	to be solved	to be solved
Independent	to be solved	to be solved
General	to be solved	to be solved

The proportion of tokenized asset into the packages defines as

Tokenized fraction —	the total amount of tokenized asset
TOKEIIIZEU ITACTIOII —	the total amount of initial asset

3. Theoretical analysis

3.1 Homogeneous [4]

Independent

General

	Discrete	Continuous
Homogeneous	to be solved	to be solved
Independent	to be solved	to be solved
General	to be solved	to be solved
	Discrete	Continuous
Homogeneous	optimal explicit solution	optimal explicit solution

to be solved

to be solved

to be solved

to be solved

-
3
Ō
÷
0
Ť
S

Row Sum Is Enough to Check the Tokenization Possibility

Theorem 1 and Lemma 3.

THEOREM 1 (TOKENIZATION NECESSARY CONDITION). If for some n^* in Step 1.(b) of the Algorithm 1 the minimum was reached by $M_0 = [S_{N-k+n^*-1}(\vec{a}^*)/n^*]$, then before Step $2 \forall n \ge$ $n^*: a^*_{N-k+n} = a^*_{N-k+n^*} = M_0$ and the total number of packages $M^* = M_0$.

LEMMA 3. If the matrix $C \in \mathbb{R}^{N \times M}$ is the optimal solution to the problem (7), then the matrix $\overline{C} = (\vec{\overline{c}} | \dots | \vec{\overline{c}})$ obtained by row averaging from C is the optimal solution.

Skoltech

The Existence of Monotonic Solution

LEMMA 1 (THE EXISTENCE OF MONOTONIC SOLUTION). Let $\vec{a} = \sum_{m=1}^{M} \vec{d}_m$ be the number of tokens in an arbitrary optimal solution for (2). Then there is an optimal solution with (\vec{a}) distributed tokens.

Lemma 1 and Lemma 4.

LEMMA 4. If \vec{a} is the optimal solution for (11), then (\vec{a}) also defines the optimal solution.

Criteria for Discrete and Necessary Condition for Continuous Problems

$$n = 3:$$

$$a_{5}^{*} = 6 > 4 = \left[\frac{9}{2}\right] = \left[\frac{S_{4}}{2}\right]$$

$$\delta = 2$$

$$B = 2$$
and
$$Lemma$$
5.
$$\overrightarrow{a^{*}} = (1, 1, 3, 4, 4)^{T}$$

LEMMA 2 (THE PIGEONHOLE PRINCIPLE CONSEQUENCE). The number of assembled by any algorithm packages M, which includes $\vec{a} = (\vec{a})$ tokens of the corresponding types, satisfies

- $k|S_N$ (where | means "divides")
- $M = S_N/k$

•
$$\forall n \in \overline{(k-1)} \colon \frac{S_{N-n}}{k-n} \ge M.$$

LEMMA 5 (OPTIMAL SOLUTION NECESSARY CONDITION). If \vec{a} has non-increasing ordered components, i.e. $(\vec{a}) = \vec{a}$, and is the optimal solution (11), then $\forall n \in (N-1)$: $a_n < a_{n+1} \Rightarrow a_n = A_N$.

Optimal Algorithm for Discrete Homogeneous

Figure 4: Algorithm 1 operation example: Step 2 and resulting solution

Optimal Algorithms for Both Special Cases

Theorem 3.

Figure 5: Continuous homogeneous tokenization algorithm

Time complexity for sorted assets: O(N)

3.2 General & Independent Continuous

	Discrete	Continuous
Homogeneous	optimal explicit solution	optimal explicit solution
Independent	to be solved	to be solved
General	to be solved	to be solved
	Discrete	Continuous
Homogeneous	optimal explicit solution	optimal explicit solution
Independent	to be solved	optimal numerical solution

to be solved

General

optimal numerical

solution

Theorem A (Short Form). The continuous portfolio sold-out problem is equivalent to

$$\|ec{a}\|_1 o \max_{ec{a}:} egin{cases} ec{a}^{\mathrm{T}} \mathbf{K} ec{a} \leq \sigma^2 \|ec{a}\|_1^2 \ ec{0} \leq ec{a} \leq ec{A} \ ec{0} \leq ec{a} \leq ec{A} \end{cases}$$

Theorem B (Polynomial reduction). The optimal portfolio sold-out problem for the continuous general case (CGOPSO) is polynomially reducible to Second-Order Cone Programming (SOCP), allowing for optimal numerical solutions.

SOCP:
$$\begin{array}{ll} \min f^T x \\ \text{s.t. } \|A_i x + b_i\|_2 \leq c_i^T x + d_i, \quad i = 1, \cdots, n \end{array}$$

LP: linear program, QP: quadratic program, SOCP second-order cone program, SDP: semidefinite program, CP: cone program.

Continuous Independent and General Cases

 $\mathrm{K}_{ij}=0 ext{ for } i
eq j$ Independent less complex any ${f K}$ is allowed General Discrete Continuous optimal explicit optimal explicit Homogeneous solution solution optimal numerical Independent to be solved solution optimal numerical General to be solved solution

3.3 General & Independent Discrete

	Discrete	Continuous
Homogeneous	optimal explicit solution	optimal explicit solution
Independent	to be solved	optimal numerical solution
General	to be solved	optimal numerical solution
	Discrete	Continuous
Homogeneous	optimal explicit solution	optimal explicit solution
Independent	NPH	optimal numerical solution
General	NPH	optimal numerical solution

Discrete Case Algorithm

Discrete Independent Case

Theorem C. Discrete independent optimal portfolio sold-out problem is **NP-Hard**. *Proof.*

The partition problem is NP-complete.

Given a set of positive integers a_1,\ldots,a_N , find out whether there is a subset of indexes $I\subset\{1,\ldots,N\}$ such that

$$\sum_{n\in I}a_n=rac{S}{2};\quad S\equiv\sum_{n=1}^Na_n.$$

We construct a tuple (\vec{A},k,K,σ^2) as the input:

•
$$ec{A} = (1, \cdots, 1)^T$$
 where $\dim\left(ec{A}
ight) = 2N$

- k = N
- K is diagonal matrix with $(a_1,\ldots,a_N,0,\ldots,0)$ on the diagonal

•
$$\sigma^2 = \frac{S}{2}$$
.

The original problem can be reduces to

$$(M,D_M) = rg\max_{M,D_M} M,$$

Discrete Independent Case (2)

$$\begin{split} \mathbf{D}_{M} &= \left(\vec{d}_{1} | \dots | \vec{d}_{M}\right) \in \{0, 1\}^{2N \times M} \quad \text{and the number of packages } M \in \{0, 1, 2\} \text{,} \\ \text{The constraint is } \sum_{m=1}^{M} \vec{d}_{m} \leq \vec{A} \text{:} \\ &\sum_{i=1}^{N} d_{m,i}^{2} \cdot a_{i} = \sum_{i=1}^{N} d_{m,i} \cdot a_{i} \leq \frac{S}{2}, \end{split}$$
[1] If M = 2, then \vec{A} is divided into 2 groups, \vec{d}_{1} and \vec{d}_{2} : $\cdot \vec{d}_{1}$ and \vec{d}_{2} meet the constraint [1] $\cdot \vec{A} = \vec{d}_{1} + \vec{d}_{2}$

• $\vec{d}_1, \vec{d}_2 \in \{0, 1\}^{2N}$.

$$\sum_{i=1}^{N} d_{1,i} \cdot a_i + \sum_{i=1}^{N} d_{2,i} \cdot a_i = \sum_{i=1}^{N} a_i = S.$$

Discrete Independent Case (3)

For example, given a solution subset of indexes $I \subset \{1, \ldots, N\}$, we can construct $\vec{d_1} = ([1 \in I], \ldots, [N \in I], \underbrace{0, \cdots, 0}_{|I|}, \underbrace{1, \cdots, 1}_{N-|I|})^T$ $\vec{d_2} = ([1 \notin I], \ldots, [N \notin I], \underbrace{1, \cdots, 1}_{|I|}, \underbrace{0, \cdots, 0}_{N-|I|})^T,$ For solution M = 2,

• as the solution:

$$\begin{cases} \sum_{i=1}^{N} d_{1,i} \cdot a_i = S/2\\ \sum_{i=1}^{N} d_{2,i} \cdot a_i = S/2. \end{cases}$$
• $\vec{d}_1 + \vec{d}_2 = (1, \cdots, 1)^T = \vec{A}$
• $\vec{d}_1, \vec{d}_2 \in \{0, 1\}^{2N}.$

Discrete Independent and General Cases

 $\mathrm{K}_{ij}=0 ext{ for } i
eq j$ Independent any ${f K}$ is allowed General more complex Discrete Continuous optimal explicit optimal explicit Homogeneous solution solution optimal numerical Independent NPH solution ptimal numerical NPH General solution

4. Dataset [1]

DeFi Meets Classic Finance

Decentralized Finance:

peer-to-peer financial services on public blockchains.

Parameters:

- Probability of Default (PD)
- Loss Given Default (LGD)
- Liquidity coverage ratio (LCR)

Bank secrecy

MakerDAO Platform

MakerDAO is an Ethereum-based lending and borrowing platform that give a stable **Dai** coin to borrowers. To get coins, user need to give asset to the platform as a **collateral** such as ETH, WBTC or ETC.

What is MakerDAO process?

- Borrow Dai through locking up crypto assets as collateral
- **Repay Dai + fee** to retrieve collateral back
- Liquidate if collateral ratio < liquidation ratio

Liquidation Process

- a fee that manages the risk associated with the coin's issuance. collateral ratio - fraction between collateral and Dai liquidation ratio - ratio for liquidation process is by **MakerDAO**

if collateral ratio < liquidation ratio

Source: https://messari.io/report/makerdao-valuation

Debt 01

Debt 02

Loss Given Default (LGD)

We represent a user's balance at time *t* as:

$$\mathsf{Bal}(t) = a(t) \cdot e(t) - d(t),$$

To calculate LGD for a user's collateral liquidation at time t, we use the following formula

Skoltech

Probability of Default (PD)

Probability of default (PD) for a single debt during interval time T via Brownian Motion:

$$\psi(x_{\min}) = P\left(T_{x_{\min},f} < T\right) = \int_{0}^{T} \frac{|x+fs|}{\sqrt{2\pi s^{3}}} e^{-\frac{(|x+fs|)^{2}}{2s}} ds$$
$$x_{\min}(t) = \frac{1}{\sigma} \ln\left(\frac{d_{0} \cdot r_{\min}}{a_{0} \cdot e_{0}}\right) + ft.$$

 $B_t(0)$

X_{min}

y_{min}

Ω

 $\boldsymbol{B_t}$

 $x_{\min}(t)$

 $y_{\min}(t)$

Skoltech

Log Equivalent Rate (LER)

A constant log-interest rate that results in the same final debt. To find LER, we use the cumulative debt at time T with LER = x, denote by h(x), which is calculated as

$$h(x) = \sum_{n=1}^{N} \Delta d_n \cdot \exp(x(T-t_n)).$$

The LER is then determined by solving the following equation for x:

$$h(x) = d(T) + (a(T) - a(T-)) \cdot e(T)$$

Where a(T) : collateral asset at time aue(T) : price of asset at time au

if liquidation happens, we consider this term as the loss of collateral value during liquidation

5. Numerical Results

Methodology : Dataset

MakerDAO dataset

Probability and level of default

Daily data \vec{A} is borrowers with debt amounts. **K** is a covariance for their defaults.

General case: Any **K** is allowed

Result : Continuous General Case

_
5
0
+
0
\checkmark
U 7

Sorted tokenized fractions for continuous general case

${\rm Tokenized\ fraction} =$	the total amount of tokenized asset
	the total amount of initial asset

Method	Tokenized Fraction
Baseline : Metaheuristic Algorithm (MEALPY)	65.20 %
Second Order Cone Program (CVXPY)	65.69 %

Tokenized fractions of the continuous general case with different optimization methods

Result : Continuous General Case

Results : Discrete General Case

N assets to the total amount of data.

the total number of possible vectors.

Results : Discrete General Case

Sorted tokenized fractions for discrete general ca	ase
--	-----

The number of chosen assets (k)	Tokenized Fraction
k=2	28.03 %
k=3	20.40 %
k=4	14.93 %
k=5	11.73 %
k=7	7.17 %
k=10	3.45 %
k=15	0.78 %
k=20	0.04 %

Tokenized fractions of the discrete general case vary with the amount of chosen assets

Discrete General Case

Comparing correlation between market concentration ratio and fraction and correlation between Gini coefficient with different number of chosen assets (k)

Demo [2]

Skoltech

6. Gas Numerical Optimization

Dividends Payout

- Securities
 - $\mathbf{A} = (a_{m,n})_{m,n=1}^{M,N} \in \mathbb{R}^{M \times N}$
- Investor ids
 - $\vec{I} = (i_1, \dots, i_N)^T \in \mathbb{R}^{N \times 1}$
- Payout per unit $\vec{C} = (c_1, \dots, c_M)^T \in \mathbb{R}^{M \times 1}$ Dividends $\text{Div}(i) = \sum_{n=1}^{N} \text{Pay}(n) \cdot [i_n = i],$

where

$$\operatorname{Pay}(n) = \sum_{m=1}^{M} c_m a_{m,n}$$

I = (Alice, Bob, Alice, Clare, Dail, Alice, Eva)

Payout Scenarios

Algorithm	Time complexity		
	summation	multiplication	
Naive	O(NM)	O(NM)	
Sparse	$\mathcal{O}(A_+ + N)$	$\mathcal{O}(A_+ + N)$	
Repeated Columns	O(MK+N)	O(MK+N)	
Low Rank	O(NR)	O(NR)	
Repeated Investors	O(NM)	$O(I_u M)$	

• *N* is the number of securities

- *M* is the number of assets
- $A_+ \leq NM$ is the number of positive elements in **A**
- $R \leq M$ is the rank of the matrix **A**
- $I_u \leq N$ is the number of unique investors in \vec{I} .

Data generator: Repeated Investors

Dirichlet Process

Chinese Restaurant Process

p(kth occupied table) $\propto n_k$ $p(\text{next unoccupied table}) \propto \alpha$

Numerical Results

Numerical Results (2)

54

Conclusions

	Discrete	Continuous
Homogeneous	optimal explicit solution	optimal explicit solution
Independent	NPH	optimal numerical solution
General	NPH	optimal numerical solution

- MakerDao DeFi protocol provides real loan dataset, which is impossible for classic banking system.
- Classic problem complexity approach helps to reduce gas consumption in DeFi.

Outlook

- Level passage for two different assets.
- More lending protocols.
- Numerical gas optimization.
- Numerical solutions for DI and DG PSOP.

Keep in Touch

Yury Yanovich

Research profile

y.yanovich@skoltech.ru